计算机组成原理

Principles of Computer Organization

一、基本信息

课程代码: 【 2050214 】

课程学分: 【3】

面向专业: 【网络工程】等 **课程性质:** 【院级必修课】◎

开课院系: 【信息技术学院 网络工程系】

使用教材:

主教材【《计算机组成原理》谭志虎等 人民邮电出版社 2021.3 出版】

参考书目【《计算机组成原理》(第5版) 白中英主编 科学出版社 2013.3 出版】

【《计算机组成原理》(第3版) 蒋本珊 清华大学出版社 2013.8 出版】

课程网站网址:

[https://mooc2-ans.chaoxing.com/mooc2-ans/mycourse/tch?courseid=227659433&clazzid=61578984 &cpi=33776349&enc=713111c60bc99a704b70b03ca1b69fd2&t=1662870805250]

先修课程:【数字逻辑电路】

二、课程简介

"计算机组成原理"是一门理论性、工程性、技术性和实践性都很强的核心专业基础课程,在计算机学科系列课程中处于承上启下的作用。课程以计算机内部总体结构为主线,涵盖数据表示、运算器、控制器、存储器、输入/输出系统等主要内容。详细讨论计算机组织结构、各主要功能部件的工作原理、设计与实现方法。课程着力加深学生对计算机软、硬件系统的整体化理解,建立硬件/软件协同的整机概念,并有效增强学生计算机系统设计的基本能力。

本课程具有知识面广、内容多、难度大、更新快的特点。针对应用型本科生的已有基础知识和学习能力,在教学中着重基本原理、基本知识点的讲授。通过课堂教学和实践环节的训练,使学生基本掌握计算机各大部件的组成原理、逻辑实现、设计方法及其互连构成单机系统的技术,以达到教学目标。

三、选课建议

本课程为计算机学科各专业的专业基础必修课程,学生应在掌握数字逻辑电路的基础上学习本课程。建议在《数字逻辑电路》和《计算机导论》课程后选修。

四、课程与专业毕业要求的关联性

毕业要求	指标点	关联
LO1: 工程知识: 能够将数	LO11: 能够通过数学与物理的知识、方法与思想,形成可用于解决	
学、自然科学、工程基础和	网络工程问题的抽象思维与逻辑分析。	
专业知识用于解决复杂网络	LO12: 能够将离散数学、算法、数据结构与程序设计等知识与方法	

10) BE	田子进行以依田体。田子共士校生江居在八尾。1971年青月 田子	
工程问题。	,用于进行计算思维,用于基本算法问题的分析、设计与实现,用于	
	网络系统的工作原理的分析与理解。	
	LO13: 能够将数字逻辑电路、计算机组成结构、操作系统、数据库	
	系统等知识与方法用于进行计算机系统工作原理的分析与理解。	
	LO14: 能够将网络体系结构、网络协议、网络互联等网络工程基础	
	知识,用于复杂网络系统的工作原理的分析与理解。	
	LO15: 能够将网络互联、信息安全、网络测试、网络编程、网络规	
	划与设计等网络工程专业知识,用于复杂网络系统的规划、设计、部	
	署、开发、测试、运维过程中的问题识别与技术分析。	
LO2: 问题分析: 能够应用	LO21: 能够借助数学、物理和工程科学的基本原理与方法,进行复	
数学、自然科学和工程科学	杂网络系统规划、设计、部署、开发、测试、运维过程中关键工程或	
的基本原理,并通过文献研	技术问题的识别、分析与表达。	
究与利用,识别、表达、分	LO22: 能够认识文献与信息资源的多样性,并通过文献与信息资源	
析复杂网络工程问题,以获	的有效收集、研读与筛选,获得有价值或可用的知识、技术或方法,	
得有效结论	辅助进行复杂网络系统中关键工程或技术问题的研究、分析与解决。	
	LO31: 能够针对复杂网络应用需求,通过有效的需求调查与研究、	
	技术分析与设计、流程设计、设备与产品选型,规划与设计满足特定	
LO3:设计解决方案:能够	需求的网络系统解决方案,并具有对解决方案进行部署与实施、开发	
设计针对复杂网络工程问题	与实现、测试与验证的能力。	
的解决方案,包括满足特定	LO32: 能够认识网络系统及其工程实践对于经济与政治、社会与文	
需求的网络系统设计方案、	 化、安全与法律、健康与伦理、环境与可持续发展等的影响,并能够	
网络工程实施方案和网络测	将相关影响作为网络工程需求的组成部分,在解决方案的设计与实施	
试方案,并能够在设计环节		
中体现创新意识,考虑社会	LO33: 能够在网络系统规划、设计、部署、开发、测试和运维等过	
、健康、安全、法律、文化	程中,就多元需求、目标与影响因素,综合运用网络工程和相关学科	
以及环境等因素	或领域的知识、技术与方法,通过系统性的分析与研判、合理的规划	
7.00 1 20 4 1121	与设计、有效的统筹与协调,给出独到的或具有一定创新性的解决思	
	路、方法或方案。	
	LO41: 能够基于计算机与网络系统的原理与方法,运用计算思维,	
	就复杂网络系统中涉及的算法或协议类问题进行提取与研究,设计相	
	关的算法解决方案,并对实施结果或数据进行有效分析和合理解释。	
LO4: 研究: 能够基于科学	LO42: 能够基于网络系统工作原理,运用网络工程相关技术领域的	
原理并采用科学方法对复杂	知识与方法,就复杂网络系统中涉及的领域性功能或性能问题进行分	
网络工程问题进行研究,包	解与研究,设计相关的技术实验方案,并对结果或数据进行有效分析	
括设计实验、分析与解释数	与合理解释。	
据、并通过信息综合得到有		
效的结论	LO43: 能够基于网络系统工作原理,综合运用网络工程及其他相关	
	领域的多元知识与方法,就复杂网络系统或工程实践中所涉及的全局	
	性功能或性能问题进行考量与研究,设计相关的实验方案,对实施结果。	
LOS HERRINARIANIA	果或数据进行分析,并通过信息综合得到合理有效的结论。	
LO5: 使用现代工具: 能够	LO51: 能够选择和利用基本的信息技术工具和网络工程工具,结合	
针对复杂网络工程问题,开	其他适当的技术与资源,进行复杂网络系统中典型工程问题的预测与	
发、选择与使用恰当的技术	分析。	

、资源、现代工程工具和信息技术工具,包括对复杂工程问题的预测与模拟,并能够理解其局限性	LO52: 能够针对复杂网络工程问题,选择恰当的虚拟仿真工具或方法,对网络系统或其解决方案进行必要的模拟与预测,并能够理解仿真模拟系统与真实系统之间的差异。	
LO6: 工程与社会: 能够基	基 LO61: 具有网络工程实习和社会实践的经历。	
于网络工程相关背景知识进 行合理分析,评价网络工程 实践和复杂网络工程问题解	LO62: 能够认识网络系统或网络工程实践对于社会、健康、安全、 法律以及文化的可能影响,以及制定与实施互联网建设、监控与管理 相关法律、法规与政策的必要性。	
决方案对社会、健康、安全 、法律以及文化的影响,并 理解应承担的责任	LO63: 能够基于网络工程专业知识,结合"互联网+"相关的应用背景,分析与评价网络系统解决方案或网络工程实践对于社会、健康、安全、法律以及文化的可能影响,并理解组织与个体应承担的责任。	
LO7: 环境和可持续发展: 能够理解和评价针对复杂网	LO71: 具有环境保护的自觉和可持续发展意识,了解环境保护与社会可持续发展相关的方针与政策、法律与法规。	
络工程问题的工程实践对环 境、社会可持续发展的影响	LO72: 能够理解和评价针对复杂网络工程问题的网络系统解决方案 或网络工程实践对环境、社会可持续发展的影响。	
LO8: 职业规范: 具有人文	LO81: 能够具有基本的人文社会科学素养。	
社会科学素养、社会责任感,能够在网络工程实践中理	LO82: 能够运用历史、哲学的知识与方法认识、分析社会现象,具有思辨能力与批判精神。	
解并遵守工程职业道德和规	LO83: 具有良好的社会公德与社会责任感,富于爱心,懂得感恩。	
范,履行责任	LO84: 能够理解并遵守网络工程的相关职业道德和规范,能够在网络工程实践中承担质量、安全、服务和环保等方面的社会责任。	
LO9: 个人和团队: 能够在 多学科背景下的团队中承担	LO91: 具备良好的身体素质和明确的个体意识,具有在团队框架下 承担个体责任、发挥个体作用的能力。	
个体、团队成员以及负责人的角色	LO92: 具备良好的团队意识、团队合作与沟通、团队协调或组织能力,能够在多学科背景下的团队中根据需要承担成员或负责人的角色, 与他人进行有效的协同。	
LO10:沟通:能够就复杂 网络工程问题与业界同行及 社会公众进行有效沟通和交	LO101: 具备沟通交流的基本技巧与能力,良好的口头与书面表达能力,有效表达自己思想与意愿的能力,倾听与理解他人需求和意愿的能力,适应工作与人际环境变化的能力。	
流,包括撰写报告和设计文 稿、陈述发言、清晰表达或	LO102: 能够依照相关的工程标准或行业规范,进行网络工程相关技术问题及文档的书面表达与口头交流。	
回应指令,并具备一定的国 际视野,能够在跨文化背景 下进行沟通和交流	LO103: 具备一门外国语言的基本听、说、读、写、译能力,能够阅读、理解网络工程专业和IT技术相关领域的外文资料,具备一定的国际视野,对专业领域相关的新技术具有敏感性。	
LO11: 项目管理: 理解并 掌握工程管理原理与经济决	LO111: 具有基本的工程成本意识,在设计针对复杂网络工程问题的解决方案时,能够考量经济与成本因素。	
策方法,并能在多学科环境 中应用	LO112: 能够理解IT项目管理的知识、原理与方法,并在多学科背景的网络工程项目或实践中进行应用。	
LO12: 终身学习: 具有自 主学习和终身学习的意识,	LO121: 具有持续更新知识、提升能力与素质的终身学习意识,养成自主学习的习惯。	
有不断学习和适应发展的能力	LO122: 具有跟踪网络技术发展、增强自我竞争力、适应持续发展所需的自主学习能力与自我挑战能力。	

五、课程目标/课程预期学习成果(预期学习成果要可测量/能够证明)

通过本课程的学习,使学生建立计算机系统级的整机概念,最终理解冯. 诺依曼计算机系统的基本工作原理。培养学生分析和解决工程技术问题的能力。

序号	课程目标 (细化的预期学习成果)		教与学方式	评价方式
1	L013	(1)深刻理解冯诺依曼结构计算机的工作原理,掌握运算器、控制器、存储器、指令系统、输入/输出系统的结构和工作原理,计算机硬件系统的设计流程和设计方法;能利用上述知识和相关模型对计算机功能部件和计算机系统设计方案进行推理和分析。 (2)掌握 CPU 性能评估方法、相关性能分析与计算,输入输出系统等基本量化手段,能运用上述量化方法对计算机复杂工程问题解决过程中的关键影响因素进行分析,具备验证解决方	讲授、案例 分析 讲授、案例 分析	作业 考试 作 光
		案的合理性。 (3)深刻理解数据表示、数据寻址方式、指令格式设计、高速缓冲存储器工作原理,能利用上述知识和相关模型对计算机功能部件和计算机系统设计方案进行对比并选择合适的方案。	讲授、案例 分析	作业 考试
2	L0121	自主学习 Proteus 仿真软件的使用方法,完成课内仿真实验。	自学	实验

六、课程内容

本课程共48课时,其中理论课32课时,实验课16课时。

第1单元 计算机系统概论

本单元主要内容是计算机系统的基本知识和概念,计算机系统的主要技术指标,计算机系统的层次结构。

通过本单元的学习知道计算机系统软件与硬件的概念,理解计算机硬件系统的主要组成部分 及主要性能技术指标;熟悉计算机系统的层次结构,了解不同层次的抽象特点;理解冯.诺依曼 机"存储程序和程序控制"的基本思想。

重点: 计算机硬件系统的主要组成、计算机系统层次结构; 冯. 诺依曼机"存储程序和程序控制"的基本思想。

难点: CPU 性能公式及 CPU 性能评价方法

理论课: 3课时,实验课: 2课时

课内实验: Proteus 应用

课外阅读: 阅读关于中国计算机发展历史的文献

课外实践:要求学生下载主流性能测试工具,对同寝室多台计算机进行性能测试,并分析性能测试结果。

第2单元 数据信息的表示

本单元主要知识点包括数据的机器级表示及不同数据表示的特点;机器数与真值的概念、定点数与浮点数的表示、二进制编码;常见的数据校验方式(奇偶校验、CRC 校验)。

通过本单元的学习**学会机器数的表示方法,能正确写出定点数、浮点数以及非数值数据在 计算机中的表示**;掌握常用校验码的形成原理。

重点: 补码及其性质; 校验码的原理与特点。

难点: 校验电路设计方法

理论课: 4课时,实验课: 4课时

课内实验: CRC 码生成校验电路的设计

第3单元 数值的机器运算

本单元的主要内容是定点数和浮点数的加减运算方法; 定点数加减电路的实现、溢出检测 及实现, 定点运算器组成与结构。

通过本单元的学习**学会定点数的加、减法运算**;知道浮点数的加、减运算的方法;理解加、减法电路及逻辑运算电路的实现方法;理解定点运算器的基本结构与工作原理。

重点: 定点数加、减运算及其运算器的设计:

难点:并行进位电路设计,让学生深刻理解并行进位的必要性,掌握基于硬件迭代设计分级并行的进位电路的原理和方法;运算器的设计。

理论课: 3课时,实验课: 6课时

通过实验使学生掌握算术逻辑运算单元(74LS181)的工作原理,并验证算术逻辑运算单元74LS181的组合功能;学会补码定点加减电路的设计。

课内实验: 补码加减电路的设计、八位算术逻辑运算。

第4单元 存储系统

本单元的主要内容是存储系统的组成、主存的组织与操作、存储系统的层次结构、高速缓冲存储器。

通过本单元的学习知道半导体存储器的基本结构、存储系统的分层结构所解决的问题。**学会根据 RAM 芯片的外部特性实现芯片的互联技术**。掌握高速缓冲存储器的工作原理以及主存与 Cache 之间的三种地址映像方式**;**

重点: RAM 芯片的互联技术、存储系统的三级结构、Cache 的工作原理、地址映象和替换策略。

难点: RAM 芯片的互联技术; Cache 和主存的存储体系的工作原理与地址转换。

理论课: 4课时,实验课: 2课时

通过实验加深对随机存储器 RAM 工作特性的理解,**学会存储器数据的读写方法**。

课内实验:静态随机存取存储器实验

第5单元 指令系统

本单元的主要知识点包括指令格式、寻址方式、指令格式设计、MIPS 指令等内容。通过本单元教学让学生认识到指令系统是硬件与软件的界面,指令系统的格式与硬件相关联,并掌握指令分析与设计的基本方法。

通过本单元的学习使学生掌握指令格式及各组成部分的作用;掌握指令和数据的寻址方式;

深刻理解指令寻址方式的特点及实现机制;深刻理解不同数据寻址方式的特点;掌握指令格式及 其优化设计的基本方法;了解 CISC 与 RISC 的概念及特点;掌握 MIPS 指令格式及特点。

重点:

- (1)操作数寻址方式,深刻理解不同操作数寻址方式的工作原理与特点,能根据约束条件选择最优化的数据寻址方式。
 - (2) 指令格式设计,能根据约束条件,设计指令格式。

难点:综合应用操作码扩展、地址码优化和应用约束条件,进行指令格式的优化设计。 理论课:6课时

第6单元 中央处理器

本单元主要内容包括中央处理器的功能及微体系结构、指令流程与数据通路、硬布线控制器及其设计、微程序控制器及其设计。

通过本单元的学习使学生熟悉中央处理器的基本功能及其基本结构;掌握指令周期的概念,理解指令周期不同阶段的任务;掌握指令执行全过程的分析与数据通路分析与设计方法;掌握微程序控制器的工作原理及微程序控制器的设计方法;了解硬布线控制的工作原理及硬布线控制器的设计方法。

重点:

- (1) 单总线 CPU 结构指令执行过程的分析;正确分析指令执行的流程、理解指令执行的数据通路是控制器设计的基础,数据通路的设计与指令功能、寻址方式等因素有关,设计中要利用数字逻辑电路的基本知识。
 - (2) 微程序控制、硬布线控制器的工作原理。

难点: 微程序的设计。

理论课: 6课时,实验课: 2课时

课内实验:数据通路实验

第7单元 I/0接口与外围设备

本单元主要内容是外部设备与主机的定时方式和信息交换方式。通过本单元的学习知道计算 机系统常用输入输出设备;掌握外围设备与主机的定时方式和信息交换方式。掌握中断的基本概 念、中断请求与响应的原理与过程。

重点:外围设备和主机的信息交换送方式、中断的基本概念、中断请求与响应的原理与过程。

难点:中断机制的实现。

理论课: 6课时

七、课内实验名称及基本要求

实验	实验名称	主要内容	实验	实验类型	备注
序号	入弧石孙	工文门石	时数	入弧人主	田江

1	Proteus应用	Proteu工具软件的应用	2	验证型	
2	CRC码编码、译 码电路的设计	根据给出的生成多项式设计CRC码编码、 译码电路。	4	设计型	
3	补码加减电路 的设计	采用74LS283芯片设计补码的加减电路	4	设计型	
4	八位算数逻辑 运算	算术逻辑运算器74LS181的应用,验证其 算术逻辑运算功能。	2	验证型	
5	静态随机存取 存储器实验	掌握随机存储器RAM的工作特性,学习存储器读写操作的过程。	2	验证型	
6	数据通路	理解数据通路的概念,通过实验分析、 观察数据在数据通路中的传输过程。	2	验证型	

八、评价方式与成绩

总评构成(1+X)	评价方式	占比
1	期末测验(本学期全部教学内容,闭卷笔试)	50%
X1	课内实验(操作+实验报告)	20%
X2	作业、课堂展示	20%
Х3	出勤率	10%

撰写人: 范新民

系主任审核签名: 王瑞

审核时间: 2023年2月