【大学物理(1)】

【University Physics (1)】

一、基本信息

课程代码:【2100077】 课程学分:【3 学分】

面向专业:【微电子学、机械设计制造及其自动化、电子科学与技术、数媒技术】

课程性质:【选修课】

开课院系: 信息技术学院

使用教材: 教材【大学物理学(力学与电磁学)王登龙北京邮电大学出版社,2020年1月第2版】

参考书目【物理学与人类文明十六讲 赵峥编,2008年版,高等教育出版社。

物理学原理在工程技术中的应用(第四版) 马文蔚主编 2015 年版,高等教育出版社。

时间简史 史蒂芬•霍金 2014年版,湖南科技出版社。】

课程网站网址:

http://kczx.gench.edu.cn/G2S/ShowSystem/CourseDetail.aspx?fCourseID=18&OrgID=2

先修课程:【高等数学(上)2100013(6)】

二、课程简介

《大学物理(1)》主要内容有力学、振动学、波动学、热学。包括质点运动学、质点动力学、机械能守恒定律、动量守恒定律、刚体的定轴转动、振动学基础、波动学基础、气体分子动理论、热力学基础。通过本课程的学习,使学生掌握力学、振动学、波动学、热学的物理学基本概念、基本理论和基本规律,能运用物理学知识解释自然科学问题,通过进一步深入学习能够分析和解决专业工程中的遇到的物理问题。

三、选课建议

适合理工类本科专业,在一年级第二学期或二年级第一学期学习,要求有高等数学的基础。

四、课程目标/课程预期学习成果

序号	课程预期 学习成果	课程目标 (细化的预期学习成果)	教与学方式	评价方式
1	L0111	结合计算机科学等专业知识,能够将自然 科学运用到复杂工程问题的恰当表述中	在线授课 资料阅读	考试
2	L0811	在线授课能够不断地提高自身的科学素养	在线授课 资料阅读	考试
3	L0812	在线授课具备责任心和社会责任感,懂法守法	在线授课	讨论
4	L1211	能够根据课程要求进行自主学习	资料阅读	章节测试作业

五、课程内容

单元	知识点	能力要求	教学重点与 难点
1. 力学	位矢、加水域、速度、加速度、加速度、中理、加速度、中理、大型、大型、大型、大型、大型、大型、大型、大型、大型、大型、大型、大型、大型、	1. 理解位矢、位移、速度、加速度、角速度和角加速度等描述质点运动和运动变化的物理量,学会运用直角坐标系、自然坐标系,计算分析质点在平面内运动。 2. 理解牛顿定律及其适用条件。 3. 理解质点的动能定理和动量定理,理解功的概念,学会计算直线运动情况下变力的功;理解保守力作功的特点及势能的概念,理解机械能守恒定律、动量守恒定律,学会运用守恒定律分析问题。	1. 物理量的 矢量性 2. 自然坐标 系下运动的 描述(微 分) 3. 各定律的 综合应用

	恒定律、刚体、 转动定律、角动 量守恒定律	4. 理解刚体绕定轴转动的转动定律和刚体在绕定轴转动 情况下的角动量守恒定律,学会运用能量守恒定律分析 刚体的有关问题。	4. 分析计算 刚体的转动
2. 电学	电场强度和电 势、电场强度叠 加原理和电势叠 加原理、高斯定 理和环路定理、 静电平衡条件	1. 知道静电场的电场强度和电势的概念以及电场强度 叠加原理和电势叠加原理,分析一些简单问题中的电场 强度和电势。理解静电场的规律:高斯定理和环路定 理。学会运用高斯定理分析电场强度。 2. 理解导体的静电平衡条件,运用导体平衡条件分析 有关静电场中球形导体的有关问题。	1. 电场计算 2. 高斯定理 3. 静电平衡 条件 4. 电场强度 和电势的关 系
3. 磁学	磁感应强度、毕 奥-萨伐尔定 律、高斯定理和 安培环路定理、 电磁感应定律和 楞次定律	1. 掌握磁感应强度的概念,理解稳恒磁场的规律: 毕 奥-萨伐尔定律、磁场高斯定理和安培环路定理。学会 运用安培环路定理分析简单磁场的磁感应强度。学会分 析计算带电体在简单磁场中的受力。 2. 知道电磁感应定律和楞次定律。	1. 毕奥-萨伐 尔定律、高 斯定理和安 培环路定理 2. 带电体在 磁场中的受 力

六、自主学习

序号	内容		预计学生学习时数	检查方式
1	指定课外扩展阅读	物理学原理在工程技术中的应用	16 学时	讨论
2	预习任务	每个单元的物理概念	8 学时	作业

七、课内实验名称及基本要求

实验 序号	实验名称	主要内容	实验时数	实验类型	备注
1	误差与测量	误差、有效数字、尺度工具使用	2 学时	综合型	必做
2	等厚干涉	测量透镜的曲率半径	4 学时	综合型	必做
3	光栅衍射实验	测量汞灯光谱谱线波长	4 学时	综合型	必做

八、评价方式与成绩

总评构成 (X)	评价方式	占比
X1	在线考试	60%
X2	课堂表现、作业、笔记	20%
Х3	实验报告	20%

撰写: 崔凤全 系主任审核: 岳春晓

日期: 2020.9.1